A semi-Lagrangian Crank-Nicolson algorithm for the numerical solution of advection-diffusion problems

نویسندگان

  • Marc Spiegelman
  • Richard F. Katz
چکیده

[1] We present a hybrid method for the numerical solution of advection-diffusion problems that combines two standard algorithms: semi-Lagrangian schemes for hyperbolic advection-reaction problems and CrankNicolson schemes for purely diffusive problems. We show that the hybrid scheme is identical to the two end-member schemes in the limit of infinite and zero Peclet number and remains accurate over a wide range of Peclet numbers. This scheme does not have a CFL stability criterion allowing the choice of time step to be decoupled from the spatial resolution. We compare numerical results with an analytic solution and test both an operator split version of our method and a combined version that solves advection and diffusion simultaneously. We also compare results of simple explicit and implicit numerical schemes and show that the semi-Lagrangian Crank-Nicolson (SLCN) scheme is both faster and more accurate on the same problem. We then apply the combined SLCN scheme to a more geologically relevant benchmark for calculating the thermal structure of a subduction zone. This problem demonstrates that the SLCN scheme can remain stable and accurate at large Courant numbers even in flows with highly curved streamlines. Finally, we introduce a variable order interpolation scheme for the semi-Lagrangian schemes that reduces interpolation artifacts for sharp fronts without introducing numerical diffusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

Implicit finite difference techniques for the advection-diffusion equation using spreadsheets

This study proposes one-dimensional advection–diffusion equation (ADE) with finite differences method (FDM) using implicit spreadsheet simulation (ADEISS). By changing only the values of temporal and spatial weighted parameters with ADEISS implementation, solutions are implicitly obtained for the BTCS, Upwind and Crank–Nicolson schemes. The ADEISS uses iterative spreadsheet solution technique. ...

متن کامل

A Family of Eulerian-Lagrangian Localized Adjoint Methods for Multi-Dimensional Advection-Reaction Equations

We develop a family of Eulerian-Lagrangian localized adjoint methods for the solution of the initial-boundary value problems for rst-order advection-reaction equations on general multi-dimensional domains. Diierent tracking algorithms, including the Euler and Runge-Kutta algorithms, are used. The derived schemes naturally incorporate innow boundary conditions into their formulations and do not ...

متن کامل

Comparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation

Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...

متن کامل

A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method

In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006